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Abstract
Introduction: Alzheimer’s disease (AD) is the most common form of dementia. Finding 
biomarkers to prognosticate transition from mild cognitive impairment (MCI) to AD is 
important to clinical medicine. Promising imaging biomarkers of AD conversion identi-
fied so far include atrophy of the cerebral cortex and subcortical gray matter nuclei.
Methods: This study introduces thickness and bending angle of the corpus callosum as 
a putative white matter marker of MCI to AD conversion. The corpus callosum is com-
putationally less demanding to segment automatically compared to more complicated 
structures and a subject can be processed in a few minutes. We aimed to demonstrate 
that callosal shape and thickness measures provide a simple, effective, and accurate 
prognostication tool in ADNI dataset. Using longitudinal datasets, we classified MCI 
subjects based on conversion to AD assessed via cognitive testing. We evaluated the 
classification accuracy of callosal shape features in comparison with the existing “gold 
standard” cortical thickness and subcortical gray matter volume measures.
Results: The callosal thickness measures were less accurate in classifying conversion 
status by cognitive scores compared to gray matter measures for AD.
Conclusions: While this paper presented a negative result, this method may be more 
suitable for a disease of the white matter.
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1  | INTRODUC TION

Alzheimer’s disease (AD) is the most common form of dementia 
(Weiner et al., 2013). The neuropathology of AD is hypothesized to 
be a cascade of β‐amyloid plaques, tau‐mediated neuronal injury, 
and tissue loss leading to cognitive impairments (Jack et al., 2010). 
The putative course of clinical progression in AD begins with mild 
cognitive impairment (MCI), later converting to AD as cognitive abil-
ities decline.

Clinically, the level of cognitive impairment is typically estab-
lished using tests of mental status including the Clinical Dementia 
Rating (CDR) and Mini Mental State Exam (MMSE). However, the 
development of robust imaging biomarkers for AD has the potential 
for clinical impact (Frisoni, Fox, Jack, Scheltens, & Thompson, 2010), 
particularly in prognostication of cognitive decline. More specifi-
cally, an important goal for neuroimaging biomarkers is to accurately 
predict whether a patient presenting with mild cognitive impairment 
(MCI) initially will degrade further to severe cognitive impairment, 
converting to AD, or remain stable.

To aid the search for imaging biomarkers of AD, the ADNI proj-
ect was conceived to provide a longitudinal, publicly available data-
set for researchers (Jack et al., 2008). A major focus of ADNI‐based 
imaging studies has been to investigate whether the trajectories of 
cortical and subcortical gray matter atrophy predict cognitive de-
cline (Weiner et al., 2013). Cortical gray matter atrophy occurs along 
a temporo‐spatial gradient with disease progression, occurring first 
in the temporal cortex and followed by occipital, parietal, frontal 
atrophy (Fennema‐Notestine et al., 2009). In patients with AD, gray 
matter volume is significantly reduced across the whole cortex, 
apart from the primary motor/sensory and visual cortex which are 
relatively spared. Examination of volumetric and shape trajectory 
with disease progression in the subcortical gray matter nuclei and 
ventricles has shown marked atrophy of the hippocampus, amygdala, 
and ventricular enlargement in AD (Fennema‐Notestine et al., 2009; 
Qiu, Fennema‐Notestine, Dale, & Miller, 2009). Willette, Calhoun, 
Egan, and Kapogiannis (2014) applied independent component 
analysis to gray matter tissue maps to achieve approximately 80% 
accuracy for classifying MCI converters versus MCI nonconverters.

Relatively few papers have examined white matter atrophy in AD 
(Migliaccio et al., 2012; Zhang et al., 2009). Migliaccio et al. (2012) 
compared healthy controls to AD patients (non‐ADNI) and found at-
rophy in lateral temporal and parietal regions, including cingulum and 
posterior corpus callosum. Zhang et al. (2009) examined diffusion 
metrics to characterize white matter microstructure in Alzheimer’s 
disease compared to front‐temporal dementia. This study found that 
white matter microstructure was less affected in AD compared to 
frontotemporal dementia.

Typically, these studies rely on high‐dimensional, nonlinear 
image registration techniques (Davatzikos, Genc, Xu, & Resnick, 
2001; Shen & Davatzikos, 2003) and/or complex cortical segmen-
tation procedures (Fischl, 2012) that can be computationally costly 
when applied to large cohorts and may require manual intervention 

or editing in extreme anatomical cases. Additionally, these studies 
typically used voxel‐based morphometry, which is sensitive to cho-
sen parameters such as smoothing size.

We recently introduced a method for extracting the midsag-
ittal plane, corpus callosum and generating thickness profiles 
(Adamson et al., 2011; Adamson, Beare, Walterfang, & Seal, 2014). 
This process can be quickly applied to any T1‐weighted MR image 
to summarize callosal curvature and midsagittal callosal thickness 
within 8 subdivisions. Midsagittal callosal area closely correlates 
with total myelinated axonal fiber count (Riise & Pakkenberg, 
2011), and studies show greater thickness of the corpus callosum 
is linked to measures of general cognitive ability (Luders et al., 
2007). To date, there has been one other study of CC morphol-
ogy change with disease progression in ADNI (Elahi, Bachman, 
Lee, Sidtis, & Ardekani, 2015). This paper used regional area and 
circularity, a measure of bending, and showed statistically signif-
icant differences between MCI converters and nonconverters. 
However, these group differences were not prognostic in nature. 
We propose that callosal measures serve as a surrogate marker 
of cerebral atrophy, providing an alternative to computationally 
taxing whole‐brain approaches. The aim of this paper was to test 
whether callosal thickness is as effective in classifying conversion 
from MCI to AD from first‐visit data as more comprehensive mea-
sures of cerebral atrophy.

2  | METHODS

Data used in the preparation of this article were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (adni.loni.usc.edu). The ADNI was launched in 2003 as a 
public–private partnership, led by Principal Investigator Michael 
W. Weiner, MD. The primary goal of ADNI has been to test 
whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD). For up‐to‐date information, see www.
adni-info.org. Longitudinal imaging data from a total of 556 sub-
jects (age 55.75–92.66) were downloaded. The imaging schedule 
involved one or two initial screening sessions followed by yearly 
follow‐up scans; the number of follow‐up scans varied between 
subjects.

Subjects were initially grouped per cognitive ability into Alzheimer’s 
disease (AD), mild cognitive impairment (MCI), and otherwise healthy 
controls (CTL). Cognitive ability was assessed using the global score on 
the Clinical Dementia Rating, which was administered at every visit. 
The CDR score has the following possible values (0 = none, 0.5 = ques-
tionable, 1 = mild, 2 = moderate, 3 = severe). Grouping criteria were as 
follows: AD—scores of CDR ≥ 1 for all visits, MCI—initial visit score of 
CDR = 0.5, CTL—scores of CDR = 0 for all visits. Demographic informa-
tion for these groups is presented in Table 1.

www.adni-info.org
www.adni-info.org
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3  | NEUROIMAGING DATA 
PREPROCESSING

3.1 | Callosal thickness

Callosal thickness measurements were obtained with an auto-
mated callosal thickness profile generation pipeline (Adamson et 
al., 2014). Briefly, this extracts the midsagittal slice, segments the 
corpus callosum, and generates cross‐sectional traversals along 
the midline of the corpus callosum; the arc lengths of these tra-
versals define callosal thickness. Mean thickness was calculated 
within 8 callosal subdivision defined by the parcellation schemes 
of Witelson (1989) and Hofer and Frahm (2006). Additionally, a 
callosal bending angle was computed as the angle between vec-
tors emanating from the midpoint of the corpus callosum to the 
apices of the genu and splenium.

3.2 | Subcortical volumes

Deep gray matter structure volumes were extracted using FIRST 
(Patenaude, Smith, Kennedy, & Jenkinson, 2011). Images were ini-
tially preprocessed using SPM12 “new segment” from which WM, 
GM, and CSF tissue probability maps and bias‐corrected images 
were obtained. Bias‐corrected images were processed by Patenaude 
et al. (2011) (FSL 5.0.9) using default options. Volumes of the fol-
lowing structures were obtained from segmentation in both left and 
right hemispheres: hippocampus, amygdala, accumbens, putamen, 
pallidum, thalamus, and caudate.

3.3 | Intracranial volume

Intracranial volume was estimated as the sum of the WM, GM, and 
CSF volumes; SPM ICV estimates were previously shown to corre-
late closely to ground truth (Weiner et al., 2013). Callosal thickness 
measure and deep gray nuclei volumes were normalized by intrac-
ranial volume.

3.4 | Cortical thickness

Cortical thickness estimates were obtained using Freesurfer 5.3.0 
(Fischl, 2012). Anatomical localization into 34 regions per hemi-
sphere was performed using the Desikan–Killiany atlas (Desikan et 
al., 2006), and measures of mean cortical thickness were extracted 
for each region in both left and right hemispheres.

3.5 | Feature sets

Several aggregate feature sets were formed from the derived imag-
ing measures for comparison. These included callosal features (CC, 
n = 9); deep gray volumes (FIRST, n = 14); a joint set of callosal fea-
tures and deep nuclear volumes (CCFIRST, n = 23); regional cortical 
thickness estimates from Freesurfer (FS, n = 68); cortical thickness 
and deep gray volumes (FSFIRST, n = 82); and all measures (n = 91).

3.6 | Adjustment for healthy aging

As a final preprocessing step, all feature values were adjusted to ac-
count for effects of neurotypical aging. A line of best fit was com-
puted for each feature against age using only the healthy control 
data. The data used for classification were the residuals to these 
lines of best fit.

3.7 | Classification

Linear support vector machines, as implemented in scikit‐learn 
(LinearSVC; 0.18.1; Fan, Chang, Hsieh, Wang, & Lin, 2008; Pedregosa 
et al., 2011), were used for classification training. Feature selection 
and parameter tuning were performed using threefold nested, strati-
fied cross‐validation within each training fold. Feature selection was 
performed using the margin‐maximizing feature elimination method 
(MFE; Aksu, Miller, Kesidis, & Yang, 2010). LinearSVC is dependent 
upon a regularization term (C) which weighs the contribution from 
the data fidelity term. A grid search was used to select C from {10−7, 
10−6, …, 102}. The classifier was then trained using the selected 
features and optimized parameter choice on the full training set. 
Feature importance was assessed by calculating the proportion of 
folds in which a feature was selected.

In this paper, the definition of conversion to AD is based on 
cognitive decline and on CDR scores, which have been used as gold 
standard labels in a traditional supervised classification problem. 
Classification accuracy was determined by the number of subjects 
correctly identified as converting from MCI to AD based on CDR 
test scores indicated mild, moderate, or severe dementia (CDR ≥ 1) 
on one or more visits. Nonconvertors scored CDR = 0.5 for all visits. 
The MCI converters are labeled C‐CDR, and the MCI nonconverters 
are labeled N‐CDR.

We estimate generalizability using the following classification 
experiments: CTL versus AD and C‐CDR versus N‐CDR. Classifier 
generalizability refers to the labeling accuracy of the classifier on 

AD MCI CTL Total

# images 437 1606 529 2,572

# subjects 136 285 135 556

Age (years) 
mean (SD)

75.70 (7.59) 75.99 (7.34) 77.03 (7.44) 75.14 (7.08)

Males 68 101 66 235

TA B L E  1   Demographic information of 
subject groups according to classification 
into Alzheimer's disease (AD), mild 
cognitive impairment (MCI), and healthy 
controls (CTL)
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unseen test data, here unseen means data not used in classifier train-
ing. Here, classifier generalizability of a given imaging feature set 
(CC; FIRST; CCFIRST; FS; FSFIRST; ALL) was estimated using cross‐
validation on 100 random 80%/20% train/test splits. Generalization 
accuracy rates were compared between each pair of feature sets 
statistically via 2‐sample t tests. Distributions of generalization ac-
curacy were found to be close to Gaussian using quantile–quantile 
plots (data not shown), and thus, t tests were appropriate.

4  | RESULTS

4.1 | Generalizability tests

Figure 1 shows cross‐validated classification accuracy rates for CTL/
AD subjects for all feature sets based on 100 80%/20% train/test 
stratified splits.

Generalization accuracy for the singular feature sets was ranked, 
in increasing order, as follows: CC, FIRST, FS. Aggregating feature 
sets showed that adding the CC features to FIRST, and FIRST to FS 
yielded marginal improvements. Using all feature sets gives equiv-
alent accuracy to FSFIRST. Supporting information Figures S1–S6 
show the feature selection probabilities using MFE across cross‐
validation splits for all feature sets. The most informative features 
per set were entorhinal and middle temporal cortical thickness, hip-
pocampal volume (ALL and FSFIRST), hippocampal volume, amyg-
dala, anterior midbody and splenium (CCFIRST), entorhinal cortex, 

middle temporal, parahippocampal (FS). In the CC feature set, all 
features except for genu and bending angle were selected with high 
probability.

Figure 2 shows the CTL/AD classification decision scores for all 
feature sets for MCI converters (C‐CDR) and nonconverters (N‐CDR). 
Each connected line denotes CTL/AD classifier scores across all visits 
for each subject. Small proportions of subjects unexpectedly transi-
tioned from AD to CTL. The proportions of CTL versus AD classified 
patients show that the nonconverters are almost equally classified CTL 
or AD, while the converters are more often classified AD than CTL.

4.2 | Classification of MCI to AD conversion

We tested the ability of each feature set to classify nonconverting 
and converting MCI patients. Classification results per feature set 
are shown in Figure 3. Classification accuracy mirrors that in the 
CTL/AD scenario (Figure 1). The singular feature set generalization 
accuracies were ordered as follows: CC < FIRST < FS. FSFIRST and 
ALL feature sets gave the highest scores. FIRST and CCFIRST gave 
intermediate scores. Feature selection probabilities are illustrated in 
Supporting information Figures S7–S12. The most informative fea-
tures were: entorhinal cortex, middle temporal, inferior parietal, hip-
pocampal volume (ALL and FSFIRST; Supporting information Figures 
S7 and S12), all regions except for genu (CC; Supporting information 
Figure S8), hippocampus, right accumbens, left putamen, anterior 
midbody of the CC (CCFIRST; Supporting information Figure S4). 

F I G U R E  1   Box plots of cross‐validated generalizability rates for classification of CTL/AD for all feature sets using CTL/AD groups as 
training data. Chance‐level and noninformative accuracy is denoted by the line at 0.5. p‐values for pairwise t tests are shown in the inset
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In the FIRST feature set, the selection probability rankings remain 
largely the same with hippocampal volumes being the most informa-
tive features although the probabilities do not vary greatly across 
structure suggesting few uniquely key features. Similarly, all features 
in the CC feature set were selected with high probability.

5  | DISCUSSION

In this paper, we presented a classification framework for prognos-
tication of conversion to AD from MCI using brain volume patterns. 
This paper examines whether callosal thickness profiles could be an 
imaging biomarker for prognosticating conversion from MCI to AD. 
Results showed that callosal thickness profiles did not achieve com-
parable accuracy to existing gray matter based “gold standards.”.

Early classification approaches applied to the ADNI dataset at-
tempted to separate subjects using the by‐CDR approach used in 
this paper (Filipovych & Davatzikos, 2011; Misra, Fan, & Davatzikos, 
2009). In these papers, voxel‐wise measures of gray matter expan-
sion or contraction required to warp to a common template were 
used as feature sets. Feature selection identified temporal cor-
tical gray matter volume and hippocampal volume as being infor-
mative for classification. Classification accuracies for the CTL/AD 
stage were high at 94% (Misra et al., 2009) and 80% (Filipovych & 
Davatzikos, 2011). However, the N‐CDR/C‐CDR classification accu-
racy rates were, on average, lower. In Ref. (Filipovych & Davatzikos, 

2011), the classification accuracy rates according to converter sta-
tus were C‐CDR 79.4%, N‐CDR 51.7%. In Ref. (Misra et al., 2009), 
cross‐validation accuracy rates ranged between 75% and 80%. The 
issue addressed by Aksu, Miller, Kesidis, Bigler, and Yang (2011) was 
the use of the CDR as the sole definition of MCI to AD conversion. 
Predicting CDR values, and thus conversion, from brain markers car-
ries uncertainties of structure/function relationships with the added 
variance of high variability of cognitive testing scores (Chou et al., 
2010).

This paper compared callosal, cortical, and subcortical gray matter 
volumetric feature sets for CTL/AD and MCI converter classification. 
Accuracy was highest when classifying control and AD patients using 
cortical thickness features derived from Freesurfer (90%), followed 
by FIRST‐derived deep gray volumes (82%) and callosal thickness 
measurements (63%). Feature selection probabilities indicated that 
the most informative features were left and right entorhinal corti-
cal thickness and hippocampal volumes. Atrophy of these structures 
is commonly reported in early disease states (Weiner et al., 2013). 
There were no specific regions of the CC that were particularly in-
formative and thus suggestive of a global CC atrophy occurring in 
AD (Ardekani, Bachman, Figarsky, & Sidtis, 2014; Teipel et al., 2002). 
The review of Di Paola, Spalletta, and Caltagirone (2010) of callosal 
atrophy work found the most robust findings were atrophy of genu 
and splenium with varying results in the midbody. The finding of pos-
terior callosal atrophy of Migliaccio et al. (2012) was not found; how-
ever, the feature selection probabilities were computed in a different 

F I G U R E  2   Classification scores for MCI patients using the classifier trained on CTL/AD for each feature set. The top row shows 
nonconverting (N‐CDR) patients, and the bottom row shows converting MCI patients (C‐CDR). In each plot, light gray represents MCI 
patients who converted based on brain trajectory (CT), and dark gray denotes those that did not (NT). The group “Reverse” (mid‐gray) 
denotes subjects that unexpectedly transitioned from AD to CTL. The star markers denote visits of CDR = 0.5, and the circle markers denote 
CDR ≥ 1
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fashion to the p‐value based results in that paper. The lower accuracy 
of the CC suggests that AD is a disease affecting gray matter more 
than white matter. The white matter atrophy reported by Migliaccio 
et al. (2012) was confined to the posterior corpus callosum and its 
nearby cortical projections. The spatial extent of these findings was 
sparse compared to the brain‐wide atrophy of cortical gray matter 
and hippocampal tissue seen in other AD research (Weiner et al., 
2013). This paper performed comparison of all feature sets under 
the by‐CDR conversion definition. The classification accuracies of all 
feature sets were relatively poor with averages ranging from 60% to 
70%; this agrees with previous work (Aksu et al., 2011). The CC fea-
ture set was particularly poor with an average accuracy rate of 56%.

Feature selection probabilities were computed to assess which 
brain structures were the most informative in prognosticating dis-
ease state. Cortical thickness, particularly temporal and parietal 
cortex, and hippocampal volumes were consistently highest ranked 
for the CTL/AD classification scenario; these findings agree with 
earlier work (Risacher et al., 2010; Weiner et al., 2013). In addition 
to these brain structures inferior parietal cortex, amygdala and pos-
terior CC became more highly ranked. The putative progression of 
AD in terms of cortical atrophy takes on the following trajectory: 
temporal, occipital, parietal, frontal with relative sparing of primary 
visual and motor cortex. The cortical projections from the poste-
rior CC are the temporal, occipital, and parietal cortices (Hofer & 
Frahm, 2006). Thus, the brain structures that are more informative 
for distinguishing subjects per functional impairment are associated 

with later stage atrophy. This finding also agrees with previous work 
(Aksu et al., 2011; Di Paola et al., 2010; Teipel et al., 2002).

The generalization accuracy rates presented in this paper for 
gray matter structures at around 60%–70% are inferior to those 
achieved in other works on ADNI (Misra et al. 2009; Willette et al., 
2014). However, the goal of this paper was to only to compare fea-
ture set generalization ability for a single classification algorithm.

Other methods have modeled the CC as a 3D object by incorpo-
rating the midsagittal and parasagittal slices and modeling thickness 
using medial axes (Styner, Gerig, Lieberman, Jones, & Weinberger, 
2003). Our study focused on a 2D, single‐slice shape representa-
tion to make a shape representation to be as compact as possible. 
Additionally, extending the segmentation to include parasagittal 
slices should not add a great deal of information not already cap-
tured in the midsagittal slice.

6  | CONCLUSION

This paper assessed accuracy of prediction of conversion from 
MCI to AD using first‐visit brain volume measures. We investi-
gated whether the thickness of the midsagittal corpus callo-
sum and its bending angle could be used as a biomarker for AD 
conversion compared to existing candidate biomarkers: cortical 
thickness and subcortical gray nuclei volumes. The CC was less 
accurate in predicting MCI to AD conversion. However, previous 

F I G U R E  3   Box plots of cross‐validated generalizability rates for the N‐CDR/C‐CDR classification experiment for all feature sets. Chance‐
level and noninformative accuracy is denoted by the line at 0.5. p‐values for pairwise t tests are shown in the inset
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work suggests that the AD setting may not be optimal for the pre-
sented method, but it is worthwhile for diseases of white matter. 
We propose that callosal measures represent a quick, simple addi-
tion to the search for an imaging biomarker in AD. Future research 
may incorporate these measures to aid clinical assessments in a 
rapid fashion.
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